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Abstract

Continuous exponential families may be employed to find continuous distributions with the

same initial moments as the discrete distributions encountered in typical applications of classical

equating. These continuous distributions provide distribution functions and quantile functions

that may be employed in equating. To illustrate, an application is considered for a randomly

equivalent groups design.
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1 Introduction

In common equipercentile equating methods such as the percentile rank method or kernel

equating (von Davier, Holland, & Thayer, 2004), discrete distributions of test scores are

approximated by continuous distributions with positive density functions on intervals that

include all possible scores. The approximations used are not entirely satisfactory in terms of the

relationships of the moments of the approximating distributions and the moments of the original

distributions. In addition, use of percentile rank typically results in conversion functions that are

not differentiable at all points, while typical use of the kernel method requires both estimation

of probabilities by use of log-linear models and smoothing of the resulting distribution function

by use of a kernel. One method to reduce this difficulty involves use of continuous exponential

families. With continuous exponential families, a one-step construction of a distribution function is

provided by a method comparable computationally to use of a log-linear model, and moments are

fit exactly where desired. This report describes use of continuous exponential families in equating,

develops appropriate methods for estimation and model evaluation, and compares results to those

from more conventional approaches to equipercentile equating.

For simplicity, an equivalent groups design is considered in which Test Forms 1 and 2 are

compared. Raw scores on Form 1 are integers from c1 to d1 and raw scores on Form 2 are integers

from c2 to d2. For j equals 1 or 2, let Xj be a random variable that represents the score on Form

j of a randomly selected population member, so that Xj has integer values from cj to dj > cj .

To simplify discussion further, assume that, for any integer x from cj to dj , Xj equals x with

probability pj(x) > 0.

Let Fj denote the distribution function of Xj , so that Fj(x) is the probability that Xj ≤ x,

and let the quantile function Qj be defined for p in (0, 1) as the smallest x such that Fj(x) ≥ p.

The functions Fj and Qj are nondecreasing but not continuous, so that they are not readily

employed in equating. Instead, equipercentile equating uses continuous random variables Aj

such that each Aj has a positive density gj on an open interval Bj that includes [cj , dj ], and

the distribution function Gj of Aj approximates the distribution function Fj . Because the

distribution function Gj is continuous and strictly increasing, the quantile function Rj of Aj is

determined by the equation Gj(Rj(p)) = p for p in (0, 1), so that Rj is the inverse G−1
j of Gj . The

advantage of Rj over Qj is that Rj is strictly monotone and continuous. The equating function

e12 for conversion of a score on Form 1 to a score on Form 2 is then e12(x) = R2(G1(x)) for x
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in B1, while the equating function e21 for conversion of a score on Form 2 to a score on Form 1

is e21(x) = R1(G2(x)) for x in B2. Both e12 and e21 are strictly increasing and continuous on

their respective ranges, and e12 and e21 are inverses, so that e12(e21(x)) = x for x in B2 and

e21(e12(x)) = x for x in B1. If g1 is continuous at x in B1 and g2 is continuous at e12(x), then

application of standard results from calculus shows that the following results hold:

1. At x, the distribution function G1 is continuously differentiable and has derivative g1(x).

2. At e12(x), R2 is continuously differentiable and has derivative 1/g2(e12(x)).

3. At x, e12 = R2(G1) has derivative e′12(x) = g1(x)/g2(e12(x)).

Similarly, if g2 is continuous at x in B2 and g1 is continuous at e21(x), then e21 has derivative

e′21(x) = g2(x)/g1(e21(x)) at x.

1.1 The Percentile-Rank Method

In the percentile-rank method, the distribution of X1 and X2 is approximated with the aid

of uniformly distributed random variables U1 and U2 such that U1 and X1 are independent and

U2 and X2 are independent. The variables U1 and U2 have range (−1/2, 1/2). The approximating

variable Aj associated with Xj is Xj + Uj . If for real x, [x] is the largest integer not greater

than x, then a density gj of Aj may be defined so that gj(x) = pj([x + 1/2]) for real x in

Bj = (cj − 1/2, dj + 1/2). For x in Bj ,

Gj(x) = ([x + 1/2] + 1/2− x)Fj([x− 1/2]) + (x + 1/2− [x + 1/2])Fj([x + 1/2]). (1)

The functions e21 and e12 are not differentiable at all points in typical situations, for, in typical

cases, gj is not continuous at integers in [cj , dj ]. One added limitation of the percentile rank

method is that the expected value E(Aj) of Aj is the same as the expected value E(Xj) of Xj ,

but the variance σ2(Aj) of Aj is σ2(Xj) + 1/12, a value always greater than the variance σ2(Xj)

of Xj .

1.2 General Kernel Equating

In general kernel equating, Aj is constructed so that E(Aj) = E(Xj) and σ2(Aj) = σ2(Xj).

Consider continuous independent random variables Wj with common mean 0 and with respective
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finite variances σ2(Wj) > 0. In typical cases, Wj has a normal distribution, but Wj may have a

logistic or uniform distribution (Lee & von Davier, in press). As in the percentile rank method,

assume that Wj and Xj are independent, assume that each Wj has positive density wj on a

nonempty open interval Cj that includes (−1/2, 1/2), and assume that the Wj are independent of

X1 and X2. Then the sum Sj = Xj + Wj has a continuous density

gSj(s) = E(wj(s−Xj)) =
dj∑

x=cj

pj(x)wj(s− x) (2)

that is positive on an open interval that includes (cj − 1/2, dj + 1/2). The variable Sj is the same

as the variable Aj in section 1.1 if Wj = Uj . The expected value of Sj is E(Sj) = E(Xj), but the

variance σ2(Sj) = σ2(Xj) + σ2(Wj) exceeds σ2(Xj).

A linear transformation of the variable Sj is used in kernel equating to provide a new

continuous random variable with the same mean and variance as the original variable Xj . Let

ζj = σ(Xj)/σ(Sj), and let Aj = E(Xj) + ζj [Sj − E(Xj)]. Then the expectation E(Aj) = E(Xj),

and the variance σ2(Aj) = σ2(Xj). Standard rules for calculation of a density under a linear

transformation and (2) imply that the random variable Aj is continuous with a density

gWj(x) = ζ−1
j gSj(E(Xj) + ζ−1

j [x− E(Xj)]) = ζ−1
j

dj∑
t=cj

pj(t)wj(ζ−1
j [x− E(Xj)]− [t− E(Xj)]) (3)

that is positive for all x such that x = E(Xj) + ζj [t− E(Xj)] + y for some integer t from cj to dj

and some y in Cj . The requirement that gWj be positive on an open interval that includes [cj , dj ]

is certainly satisfied if the density wj is positive on the real line R, so that Cj = R. If Wj has

cumulative distribution function Hj , then the distribution function of Aj is

GWj(x) =
dj∑

t=cj

pj(t)Hj(ζ−1
j [x− E(Xj)]− [t− E(Xj)]). (4)

If the wj are continuous and the densities gj are positive on [cj , dj ], then the conversion functions

e12 and e21 are differentiable.

The limitation still remains that Aj and Xj need not have any common moments of order

greater than 2. To be sure, if W0 is a random variable with mean 0 and all finite moments and

if Wj = hjW0 for positive real hj , then, as hj approaches 0, the moments of Aj converge to the

moments of Xj ; however, this convergence is achieved at a significant cost. As hj approaches 0,

gWj(x) approaches 0 for x not an integer in [cj , dj ], and gWj(x) approaches ∞ for x an integer in

[cj , dj ]. In typical cases, the derivatives of e12 and e21 will become very large at some points.
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1.3 Continuous Exponential Families

A much more complete solution to the problem of matching moments may be achieved by use

of continuous exponential families. Let qj and rj be real numbers such that qj < cj and rj > bj .

Let ukj(x), k ≥ 0, be a polynomial of degree k, so that real constants hkk′ , 0 ≤ k′ ≤ k, k ≥ 0, exist

such that

xk =
k∑

k′=0

hkk′juk′j(x).

Let µkj(Xj) be the expectation E(ukj(Xj)) of ukj(Xj) for k ≥ 1. Then the kth moment E(Xk
j ) of

Xj satisfies

E(Xk
j ) =

k∑
k′=0

hkk′jµk′j(Xj).

Let K be some positive integer, and let uKj(x) be the K-dimensional vector with coordinates

ukj(x), 1 ≤ k ≤ K. Let µKk(Xj) be the K-dimensional vector with coordinates µkj(Xj) for

1 ≤ k ≤ K. For K-dimensional vectors x and y with respective coordinates xk and yk, 1 ≤ k ≤ K,

let x′y be the summation
∑K

k=1 xkyk. For any K-dimensional vector θ with coordinates θk,

1 ≤ k ≤ K, a density gKj(·,θ) may be defined for x in [qj , rj ] so that

gKj(x,θ) = γKj(θ) exp[θ′uKj(x)], (5)

where

[γKj(θ)]−1 =
∫ rj

qj

exp[θ′uKj(x)]dx. (6)

In the case of K = 1, (5) implies that gKj(x, θ) is the conditional density of an exponential

random variable given that the variable having value between qj and rj . For K = 2, gKj(θ) is the

conditional density of a normal random variable given that the variable has value between qj and

rj .

As in Gilula and Haberman (2000), the quality of the approximation provided by the density

gKj(·,θ) in (5) may be assessed by use of the expected logarithmic penalty

HKj(θ) = −E(log gKj(X, θ)) = − log γKj(θ)− θ′µKj(Xj). (7)

The smaller the value of HKj(θ), the better is the approximation.

Several rationales can be considered for use of the expected logarithmic penalty HKj(θ)

(Gilula & Haberman, 2000). If Y is a continuous real variable with density f , if g is also a
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probability density function, and if a penalty of − log g(y) is recorded if Y = y, then the smallest

expected log penalty E(− log g(Y )) is obtained only if g(Y ) = f(Y ) with probability 1. This

feature in which the penalty is determined by the value of the density at the observed value of Y

and the expected penalty is minimized by selection of the actual density is only encountered if the

penalty is of the form a− b log g(y) for Y = y for some real constants a and b > 0 such that b > 0.

This rationale is not applicable to the discrete variables Xj . In general, if Y is discrete, then

the smallest possible expected log penalty E(− log g(Y )) is −∞, for, given any real c > 0, g can be

chosen so that g(Y ) = c with probability 1 and the expected log penalty is − log c. The constant c

may be arbitrarily large, so that the expected log penalty may be arbitrarily small. Nonetheless,

the criterion E(− log g(Y )) for a density g cannot be made arbitrarily small if adequate constraints

are imposed on g. In this section, the requirement that the density function used for prediction

of Xj belongs to a continuous exponential family suffices to ensure that, in (7), there is a finite

infimum IKj of the expected log penalty HKj(θ) over all θ.

A unique K-dimensional vector θKj with coordinates θKkj , 1 ≤ k ≤ K, exists such that

HKj(θKj) = IKj . This vector θKj is the unique solution of the equations

νkj(θK) =
∫ dj

cj

ukj(x)gKj(x,θK)dx = µkj(Xj), 1 ≤ k ≤ K. (8)

If νKj(θK) is the K-dimensional vector with coordinates νkj(θK) for 1 ≤ k ≤ K and µKj(Xj) is

the K-dimensional vector with coordinates µkj(Xj) for 1 ≤ k ≤ K, then νKj(θK) = µKj(Xj).

Equivalently, if VKj is a random variable with range [qj , rj ] with density gKj(·,θK), then

µkj(VKj) = µkj(Xj) for all integers from 1 to K, so that E(V k
Kj) = E(Xk

j ) for 1 ≤ k ≤ K. If

K ≥ 1, then E(VKj) = E(Xj). If K ≥ 2, then σ2(VKj) = σ2(Xj). If K ≥ 3, then VKj and Xj have

the same skewness coefficient. If K ≥ 4, then VKj and Xj have the same coefficient of kurtosis.

By (7) and (8), the minimum expected penalty

IKj = − log γKj(θKj)− θ′
KjµKj(Xj). (9)

Corresponding to the density gKj(·,θKj) in (5) is the cumulative distribution function

GKj(x) =
∫ x

qj

gKj(v,θKj)dv (10)

for x between qj and rj . One then has an inverse RKj such that GKj(RKj(p)) = p for p in (0, 1).

In equating, a positive integer Kj is selected for each j. Then e12(x) = RK22(GK11(x)) for x in

(q1, r1) and e21(x) = RK11(GK22(x)) for x in (q2, r2).

5



In section 2, estimation of θKj , IKj , GKj , and RKj is considered for the case of simple

random sampling. Estimates, large sample approximations for distributions of estimates, and

estimated asymptotic standard deviations are all provided.

In section 3, some examples of estimation are provided for some distributions of test scores

reported in von Davier et al. (2004). In section 4, conclusions are reached concerning the status

of continuous exponential families in equating.

In sections 2, 3, and 4, comparisons with alternative equating methods are considered. For

this purpose, some consideration of expected log penalty for percentile-rank and kernel methods is

provided in section 1.4

1.4 Comparisons by Expected Log Penalty

The proposed approximations may be compared to those from percentile-rank or kernel

equating. In the percentile-rank case, the expected log penalty

IPj = −E(log pj(Xj)) = −
dj∑

x=cj

pj(x) log pj(x) (11)

is the entropy of the discrete variable Xj . In the percentile-rank case with log-linear smoothing

of order K ≤ dj − cj , the probabilities pj(x) are approximated by probabilities pKj(x) defined so

that log pKj(x) is a polynomial in x of order K and the expected penalty

IPKj = −E(log pKj(Xj)) = −
dj∑

x=cj

pj(x) log pKj(x) ≥ IPj (12)

is minimized subject to this constraint on pKj(x). One has

pKj(x) = ηKj(ωKj) exp[ω′
KjuKj(x)], (13)

[ηKj(ωKj)]−1 =
dj∑

x=cj

exp[ω′
KjuKj(x)], (14)

and
dj∑

x=cj

uk(x)pKj(x) = µkj(Xj), 1 ≤ k ≤ K. (15)

Because a polynomial of degree dj − cj can be found to fit any real function at dj − cj points, if

K = dj − cj , then IPKj = IKj and pKj(x) = pj(x). In general, the equation IPKj = IPj holds if,
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and only if, log pj(x) is a polynomial of order K in terms of x, so that the smoothed probability

pKj(x) is equal to the actual probability.

In kernel equating, (3) implies that the expected log penalty is

IWj = −E(log gWj(X)) = −
dj∑

x=cj

pj(x) log gWj(x). (16)

With log-linear smoothing of order K ≥ 2, the expected log penalty is

IWKj = −
dj∑

x=cj

pj(x) log gWKj(x), (17)

where

gWKj(t) = ζ−1
j

dj∑
x=cj

pKj(x)wj(ζ−1
j [t− E(X)]− [x− E(X)]). (18)

The expected log penalty can be made arbitrarily small by selection of Wj = hjW0, where hj is

positive, W0 is a continuous random variable with positive density w0, and W0 is independent of

X1 and X2. Because wj(t) = w0(t/hj)/hj , it follows that, as hj approaches 0, ζj approaches 1 and

hjgWKj(x) has a lower limit at least equal to pKj(x)w0(0) for each integer x from cj to dj . Thus

IWKj approaches −∞. As evident from the formulas in the introduction for conversions, a very

large value of gWKj has the danger that the derivative of a conversion will be very large and the

conversion will be unstable. This issue is customarily treated in kernel equating (von Davier et al.,

2004, pp. 62–64). One relatively simple approach based on the expected log penalty is to require

that gWKj(t) have no more than K − 1 points at which its derivative changes sign, just as gKj(t)

has a derivative that changes sign no more than K − 1 times.

2 Estimation of Parameters Under Random Sampling

Data from random sampling are readily applied to estimation of the parameters θK for

K ≥ 1 (Gilula & Haberman, 2000). Recall definitions in section 1.3. For j equals 1 or 2, let

Xij , 1 ≤ i ≤ nj , be independent and identically distributed random variables with the same

distribution as Xj . Let mkj(Xj) be the sample mean

mkj(Xj) = n−1
j

nj∑
i=1

ukj(Xij) (19)

for k ≥ 1, and let mKj(Xj) be the K-dimensional vector with coordinates mkj(Xj) for 1 ≤ k ≤ K.

If the Xij , 1 ≤ i ≤ nj , have at least K distinct values, then θKj is estimated by the K-dimensional

7



vector θ̂Kj with coordinates θ̂Kkj , 1 ≤ k ≤ K, where θ̂Kj is the unique K-dimensional vector such

that

νkj(θ̂Kj) = mkj(Xj), 1 ≤ k ≤ K. (20)

Thus (20) corresponds to (8. As the sample size nj approaches ∞, θ̂Kj converges to θKj with

probability 1, and n
1/2
j (θ̂Kj − θKj) converges in distribution to a multivariate normal random

variable with zero mean and with covariance matrix BKj = C−1
KjDKjC−1

Kj . Here DKj is the

covariance matrix of uKj(Xj) and CKj is the covariance matrix of the K-dimensional vector

uKj(VKj). Thus CKj = UKj(θKj), where row k and column k′ of UKj(θKj) is

UKkk′j(θKj) =
∫ dj

cj

ukj(x)uk′j(x)gKj(x,θKj)dx− νkj(θKj)νk′j(θKj). (21)

One may estimate WKj by ĈKj = UKj(θ̂Kj), and DKj may be estimated by the sample

covariance matrix D̂Kj of uK(Xj). Thus BKj is estimated by B̂Kj = Ĉ−1
KjD̂KjĈ−1

Kj . The

estimated asymptotic standard deviation (EASD) of θ̂Kkj is σ̂(θ̂Kkj) = (n−1
j B̂Kkkj)1/2, where

B̂Kkkj is row k and column k of B̂Kj .

The minimum expected penalty IKj in (9) may be estimated by

ÎKj = − log γKj(θ̂Kj)− θ̂
′
KjmKj(Xj). (22)

The estimate ÎKj of (22) has the standard stability property that, as the sample size n increases,

ÎKj converges to IKj with probability 1 and n
1/2
j (ÎKj − IKj) converges in distribution to a normal

random variable with mean 0 and variance

σ2(− log gKj(X, θKj)) = [µKj(Xj)]′BKjµKj(Xj).

Let p̂j(x) be the fraction of observations i from 1 to nj with Xij = x, and let 0 log 0 be 0. The

EASD of ÎKj is then

σ̂(ÎKj) = (n−1
j [mKj(Xj)]′B̂KjmKj)1/2. (23)

Equivalently, (23) can be written in terms of the density gKj of (5). One has

σ̂(ÎKj) =

n−1
j

dj∑
x=cj

[−p̂j(x) log gKj(x, θ̂Kj)− ÎKj)2


1/2

. (24)
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2.1 Alternative Estimation Methods and Information

In comparisons with the alternative methods of section 1.1, 1.2, and 1.4, the expected log

penalty IPj for the percentile-rank case defined by (11) is estimated by

ÎPj = −
dj∑

x=cj

p̂j(x) log p̂j(x), (25)

and the EASD of ÎPj is

σ̂(ÎPj) =

n−1
j

dj∑
x=cj

p̂j(x)[− log p̂j(x)− ÎEj ]2


1/2

. (26)

In the percentile-rank case with log-linear smoothing of order K, the estimated expected log

penalty that corresponds to IPKj in (12) is

ÎPKj = −
dj∑

x=cj

p̂j(x) log p̂Kj(x), (27)

where (13), (14), and (15) lead to

p̂Kj(x) = ηKj(ω̂Kj) exp[ω̂′
KjuKj(x)] (28)

and
dj∑

x=cj

ukj(x)p̂Kj(x) = mkj(Xj), 1 ≤ k ≤ K.

The EASD of ÎPKj is

σ̂(ÎPKj) =

n−1
j

dj∑
x=cj

p̂j(x)[− log p̂Kj(x)− ÎEKj ]2


1/2

. (29)

In kernel equating with a fixed choice of Wj , IWj in (16) may be estimated by

ÎWj = −n−1
j

dj∑
x=cj

log ĝWj(x), (30)

where the gWj of (3) is estimated by

ĝWj(t) = ζ̂−1
j

dj∑
x=cj

p̂j(x)wj(ζ̂−1
j (t− X̄j)− [x− X̄j ]), (31)
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X̄j is the sample mean m1(Xj) of the Xij , 1 ≤ i ≤ nj , σ̂(Xj) is the sample standard deviation of

the Xi, and ζj is estimated by

ζ̂j = σ̂(Xj)/[σ̂2(Xj) + σ2(Wj)]1/2.

The formula for the EASD of ÎWj is somewhat more complicated than in other cases, so it is

omitted.

With log-linear smoothing of order K ≥ 2, the expected log penalty IWKj of (17) is estimated

by

ÎWKj = −
dj∑

x=cj

p̂Kj(x) log ĝWKj(x), (32)

where gWKj in (18) is estimated by

ĝWKj(t) = ζ̂−1
j

dj∑
x=cj

p̂Kjwj(ζ̂−1
j [t− X̄j ]− [x− (̄X)j ]). (33)

The EASD of the estimate ÎWKj in (32) is a bit more complex than in the case of the estimate

ÎWj in (30), so this formula is also omitted.

2.2 Equating Functions for Continuous Exponential Families

The distribution function GKj in (10) for the continuous exponential family has estimate ĜKj

defined by

ĜKj(x) =
∫ x

qj

gKj(v, θ̂Kj)dv (34)

for qj ≤ x ≤ rj , and the quantile function RKj corresponding to GKj has estimate R̂Kj defined

by ĜKj(R̂Kj(p)) = p for 0 < p < 1. Standard large-sample arguments imply that, as the sample

size nj approaches ∞, ĜKj(x) converges to GKj(x) with probability 1 for qj ≤ x ≤ rj , so that

|ĜKj −GKj |, the supremum of |ĜK(x)−GK(x)| for qj ≤ x ≤ rj , converges to 0 with probability 1.

In addition, [ĜKj(x)− FKj(x)]/σ(ĜKj(x)) converges in distribution to a normal random variable

with mean 0 and variance 1 if the asymptotic standard deviation of ĜKj(x) is

σ(ĜKj(x)) = {n−1
j {[TKj(x)]′BKjTKj(x)}1/2 (35)

and if

TKj(x) =
∫ x

qj

[uKj(v)− µKj(Xj)]gKj(v,θKj)dv. (36)
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Similarly, the estimated quantile function R̂Kj(p) corresponding to the distribution function ĜKj in

(34) converges to the quantile function RKj(p) with probability 1, and [R̂Kj(p)−RKj(p)]/σ(R̂Kj(p))

converges in distribution to a normal random variable with mean 0 and variance 1 if the asymptotic

standard deviation of R̂Kj(p) is

σ(R̂Kj(p)) = n
−1/2
j [gKj(RKj(p))]−1σ(ĜKj(RKj(p))). (37)

Estimated asymptotic standard deviations may be derived by use of obvious substitutions of

estimated parameters for actual parameters. Thus (35) for the asymptotic standard deviation

R̂Kj(p) leads to the estimated asymptotic standard deviation

σ̂(ĜKj(x)) = {n−1
j [T̂Kj(x)]′B̂KjT̂Kj(x)}1/2, (38)

where the vector TKj(x) of (36) is estimated by

T̂Kj(x) =
∫ x

qj

[uK(v)−mK(Xj)]gKj(v, θ̂Kj)dv, (39)

and the (37) for the asymptotic standard deviation of R̂Kj(p) leads to the estimated asymptotic

standard deviation

σ̂(R̂Kj(p)) = n
−1/2
j [gKj(R̂Kj(p))]−1σ̂(ĜKj(RKj(p))). (40)

In the case of equating with constants K1 for X1 and K2 for X2, the conversion function e12(x)

for conversion of Score x on Form 1 to a score on Form 2 has estimate ê12(x) = R̂K22(ĜK11(x)) for

q1 < x < r1, and the conversion function e21(x) for conversion of a Score x on Form 2 to a score

on Form 1 has estimate ê21(x) = R̂K11(ĜK22(x)) for q2 < x < r2. As the sample sizes n1 and n2

become large, ê12(x) converges with probability 1 to e12(x), and ê21(x) converges with probability

1 to e21(x). In addition, (ê12 − e12)/σ(ê12) converges in distribution to a standard normal random

variable if the asymptotic standard deviation of the estimated conversion ê12(x) is

σ(ê12(x)) = [σ2(ĜK22(e12(x))) + σ2(ĜK11(x))]1
′2/gK22(e12(x)). (41)

Given (41), it follows that the EASD of the estimated conversion ê12(x) is

σ̂(ê12(x)) = [σ̂2(ĜK22(e12(x))) + σ̂2(ĜK11(x))]1/2/ĝK22(ê12(x))) (42)

The case of the conversion function e21 from Form 2 to Form 1 is treated in a similar fashion.
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2.3 Other Equating Functions

The large-sample results for equating based on continuous exponential families are a bit

simpler than those for percentile ranks or for the kernel method; however, the two cases differ

somewhat.

In the case of percentile ranks, for x in the open interval Bj = (cj − 1/2, dj + 1/2), the

continuous distribution function Gj in (1) may be estimated by

Ĝj(x) = ([x + 1/2] + 1/2− x)F̂j([x− 1/2]) + (x + 1/2− [x + 1/2])F̂j([x + 1/2]), (43)

where F̂j is the empirical distribution function of Fj . With probability 1, |Ĝj −Gj | converges to

0 as nj becomes large. If, for 0 < p < 1, the estimated quantile function R̂j corresponding to Ĝj

satisfies Ĝj(R̂j(p)) = p and the quantile function Rj corresponding to Gj satisfies Gj(Rj(p)) = p,

then the estimated quantile function R̂j(p) converges to the quantile function Rj(p) with

probability 1, so that the estimated conversion function ê12(x) = R̂2(Ĝ1(x)) for conversion of

Score x on Form 1 to a score on Form 2 converges to the corresponding convergence function

e12(x) = R2(G1(x)) for x in B1. Results for asymptotic normality are not entirely satisfactory, for

a case with e12(x)− 1/2 equal to an integer typically results in no normal approximation for the

distribution of the estimated conversion function ê12(x). Similar issues arise for the percentile-rank

method with log-linear smoothing.

Asymptotic results are available for kernel equating (von Davier et al., 2004) that are

comparable to those for continuous exponential families. When kernel equating is applied with

log-linear smoothing, the results are a bit more complicated than for continuous exponential

families due to the use of both smoothing of frequencies and conversion to a continuous distribution

by use of the kernel approach.

2.4 Computational Issues

Given a starting value θKj0, the Newton-Raphson algorithm may be employed to compute

θ̂Kj in (20). At step t ≥ 0, a new approximation θKj(t+1) of θ̂Kj is found by the equation

θKj(t+1) = θKjt + [UKj(θKjt)]−1[mKj(Xj)− νKj(θKjt)]. (44)

Recall that the elements of the K by K matrix UKj are defined in (21), the elements of the

K-dimensional vector mKj(Xj) are defined in (19), and the elements of the K-dimensional vector

function νKj are defined in (8).
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In practice, numerical work is simplified if computations employ Legendre polynomials

(Abramowitz & Stegun, 1965, chapters 8, 22). The Legendre polynomial of degree 0 is P0(x) = 1,

the Legendre polynomial of degree 1 is P1(x) = x, and the Legendre polynomial Pk+1(x) of degree

k + 1, k ≥ 1, is determined by the recurrence relationship

Pk+1(x) = (k + 1)−1[(2k + 1)xPk(x)− kPk−1(x)], (45)

so that P2(x) = (3x2 − 1)/2. These polynomials satisfy the relationships∫ 1

−1
Pj(x)Pk(x)dx = δjk

2
2k + 1

(46)

for nonnegative integers j and k, where the Kronecker delta δjk is 1 for j = k and 0 otherwise. It

is relatively efficient for numerical work to let ukj(x) = Pk((2x− qj − rj)/(rj − qj)), for then the

K by K matrix UKj(0K) defined in (21) is a diagonal matrix, where 0K is the K-dimensional

vector with all coordinates 0. The obvious choice ukj(x) = xk is avoided because this case often

leads to poor conditioning of the matrix UKj(θ). The Legendre polynomials also form the basis

for the Gaussian quadratures required for evaluation of the integrals from cj to dj that are needed

in numerical work (Abramowitz & Stegun, 1965, p. 887). In this paper, calculations use 8-point

Gaussian quadrature.

3 Example

Table 7.1 of von Davier et al. (2004) provides two distributions of test scores that are integers

from cj = 0 to dj = 20. To illustrate results, the case of qj = −0.5 and rj = 20.5 is considered for

K from 2 to 4 and for the Legendre polynomial case with ukj(x) = Pk((2x− qj − rj)/(rj − qj)) for

Pk defined as in (45). Results for parameters are summarized in Tables 1 and 2. Results in terms

of estimated expected log penalties are summarized in Table 3. These tables suggest that gains

over the quadratic case (K = 2) are very modest for both X1 and X2, although some evidence

exists that, for both variables, the parameters θ3j3, θ4j3, and θ4j4 of (8) are nonzero. Estimated

parameters in Tables 1 and 2 are computed as in section 2.4. The estimated asymptotic standard

deviations are found as in section 2. In Table 3, (22) and (23) are employed to obtain estimates.

Use of equipercentile equating leads to somewhat similar results. For X1, the estimated

expected log penalty ÎP1 in (25) is 2.741, and the EASD from (26) is 0.015. For X2, ÎP2 is 2.765,

and the EASD is 0.014. For the case of K = 2, for X1, the estimated expected log penalty ÎP21

13



Table 1

Parameters for Variable X1

Parameter Estimate EASD

θ21 0.590 0.074

θ22 -2.364 0.097

θ31 0.701 0.100

θ32 -2.415 0.103

θ33 0.172 0.112

θ41 0.792 0.124

θ42 -2.681 0.172

θ43 0.294 0.140

θ44 -0.322 0.150

Note. EASD = estimated asymptotic standard deviation.

Table 2

Parameters for Variable X2

Parameter Estimate EASD

θ21 1.059 0.076

θ22 -2.105 0.094

θ31 1.212 0.110

θ32 -2.224 0.117

θ33 0.231 0.112

θ41 1.287 0.137

θ42 -2.372 0.172

θ43 0.338 0.150

θ44 -0.173 0.132

Note. EASD = estimated asymptotic standard deviation.
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Table 3

Estimated Expected Log Penalties for Variables X1 and X2

Variable Degree Estimate EASD

X1 2 2.747 0.015

X1 3 2.747 0.015

X1 4 2.745 0.015

X2 2 2.773 0.014

X2 3 2.772 0.014

X2 4 2.771 0.014

Note. EASD = estimated asymptotic standard deviation.

from (27) is 2.748, and the EASD from (29) is 0.015. For X2, ÎP22 is 2.773, and the EASD is

0.014. As one illustration of results for kernel equating, consider the case of W1, a normal random

variable with mean 0 and standard deviation 0.622; W2, a normal random variable with mean

0 and standard deviation 1.367; and K = 2 for both X1 and X2 (von Davier et al., 2004, p.

106). Computations for the kernel method are described in the user guide for Version 2.1 of the

LOGLIN/KE program (Chen, Yan, Han, & von Davier, 2006). For X1, the estimated expected

penalty ÎW21 from (32) is 2.748. For X2, ÎW22 is 2.779. In both cases, the kernel density has a

derivative that only changes sign at K − 1 = 1 points, so that the criterion of section 1.4 for the

kernel density is satisfied. At least for the example under study, it appears that the equipercentile,

kernel, and continuous exponential family approaches lead to comparable results in terms of

compatibility with the data.

Equating results may now be considered. The case of the conversion e12 from Form 1 to

Form 2 will be examined for the cases under study. Results are provided in Table 4. They employ

formulas developed in sections 2.2 and 2.3. In kernel and percentile-rank equating, log-linear

smoothing is used with the constant K equal to 2 for each variable. For continuous exponential

families, K1 = K2 = 2. These results are an illustration of one of a very large number of

possibilities. In this example, the three conversions are very similar for all possible values of X1.

For the two methods for which estimated asymptotic standard deviations are available, results

are rather similar. The results for the continuous exponential family are relatively best at the
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extremes of the distribution.

Table 4
Comparison of Conversions From Form 1 to Form 2

Continuous exponential Kernel Percentile rank
Value Estimate EASD Estimate EASD Estimate
0 0.091 0.110 -0.061 0.194 0.095
1 1.215 0.209 1.234 0.235 1.179
2 2.304 0.239 2.343 0.253 2.255
3 3.377 0.240 3.413 0.253 3.325
4 4.442 0.230 4.473 0.242 4.392
5 5.504 0.214 5.529 0.225 5.458
6 6.564 0.198 6.582 0.207 6.522
7 7.621 0.182 7.634 0.189 7.585
8 8.677 0.169 8.685 0.174 8.647
9 9.732 0.159 9.734 0.162 9.706
10 10.784 0.155 10.781 0.155 10.761
11 11.834 0.155 11.825 0.153 11.823
12 12.880 0.160 12.865 0.156 12.859
13 13.919 0.168 13.900 0.163 13.898
14 14.950 0.177 14.925 0.172 14.928
15 15.966 0.184 15.936 0.179 15.947
16 16.959 0.187 16.925 0.182 16.949
17 17.912 0.179 17.879 0.178 17.927
18 18.802 0.156 18.799 0.164 18.871
19 19.592 0.109 19.723 0.145 19.760
20 20.240 0.040 20.818 0.119 20.380

Note. EASD = estimated asymptotic standard deviation.

4 Conclusions

Results in this report suggest that equating via continuous exponential families can be

regarded as a viable competitor to kernel equating. Continuous exponential families lead to

simpler procedures and more thorough moment agreement, for fewer steps are involved in equating

by continuous exponential families due to elimination of kernel smoothing. In addition, equating

by continuous exponential families does not require selection of bandwidths.

One example does not produce an operational method, and kernel equating is rapidly

approaching operational use, so it is important to consider some required steps.

Although equivalent-group designs are used in operations both at ETS and elsewhere, a
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large fraction of equating designs are more complex and require at least treatment of bivariate

distributions. For this purpose, continuous exponential families can be employed, for continuous

exponential families can be applied to multivariate distributions. This issue is expected to be the

subject of future work. No reason exists to expect that continuous exponential families cannot be

applied to any standard equating situation to which kernel equating has been applied.

It is certainly appropriate to consider a variety of applications to data, and some work on

quality of large-sample approximations is appropriate when smaller sample sizes are contemplated.
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